
Computational Exploration of the BKT Transition in XY-interaction Systems

Transition of Vortex-Antivortex Pairs
Vortices and antivortices are a topological defect that arise theoretically from 

calculations in perturbation theory, results of evaluating the partition function for a 
system. Graphically, the description is relatively self explanatory. As shown in Figure 
2, the vortex is denoted by a circulation of magnetic moment vectors around a 
centerpoint. Conversely, the antivortex is shown at the other singularity of moments 
in the graph, where two adjacent vectors seem to face directly opposite one another. 
These pairs are initially bounded under a temperature Tc, but eventually evolve into 
unbounded independent vortices and antivortices.[5]

The XY Hamiltonian
In correlated spin systems, different models described by Hamiltonians, energy 

operators, are used to describe the total energy of the system. The BKT transition 
only occurs exclusively in systems described by the Hamiltonian, 

Where J is the spin-coupling constant, and si and sj are spin moments [1][2][3][4]. This 
Hamiltonian, true to its name, accounts for spin interactions on a single particle, up 
and down, and left to right (hence, XY model). This model supports the BKT 
transition, an second-order topological phase transition. The implementation of this 
across theoretical systems is often tedious and mathematically repetitive, so 
computers are often employed for the use of fast and accurate calculation of 
considerably large (compared to hand-calculated systems, they are still very small) 
systems. 

Abstract 
The Berezinskii-Kosterlitz-Thouless (BKT) Transition is a topological phase 

transition that appears in systems with spin interactions described by the XY 
Hamiltonian. Throughout its history, the BKT transition has garnered attention for its 
unique topological properties, and its application to different superfluid and 
superconducting systems. In this study, we develop software to simulate various 
system properties and actions with a computational implementation of the XY model 
as well as a Markov-Chain Monte Carlo (Metropolis-Hastings) sampling algorithm. 
Finally, this software is used to observe the BKT transition in a computer-generated 
spin lattice system, governed by XY spin interactions. The results show that the 
transition temperature occurs at Tc ≅1.17K, relatively close to experimentally observed 
values. 

A Computational Implementation of the XY Model
The Computational Implementation of the XY Model was grown with the help of open-source code from an 

implementation of a Metropolis-Hastings sampling algorithm[6] (Markov-Chain Monte Carlo algorithm, aka MCMC) originally 
developed by Shiling Liang, Ph.D[7]. The final code accounts for various processes relevant to a two-dimensional topological 
system.

Heat Capacity and Free Energy
The specific heat capacity of the lattice can be found using the equation[8] :
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Conclusion + Future Work
Although the overall goal of the project was met, there were challenges in 

software development and tuning. Implementation of the Metropolis-Hastings 
algorithm was particularly challenging, and took a great deal of time to test and 
confirm proper operation. Additionally, further work could be done from the 
current state of the project. In condensed matter, this software could be used 
to characterize correlated magnetic systems, which could also contribute to 
findings in spintronics, chip design, or various other topics involving computer 
engineering or related fields. Also, recent breakthroughs in the field of ambient 
superconductivity have been incredibly promising, and certain programs built 
on top of this software could possibly model certain candidates for ambient 
superconductors. Following from these ideas, this piece of software is a tool to  
work on more accurate material characterization and design, allowing for a 
smoother workflow between theory and experiment.

There is a peak at kbT/J ≈ 1.1671 in the graph of specific heat capacity
against temperature[9]. This peak position and height have been shown to
be independent of system size for lattices of linear size greater than 256. Our results show a peak at roughly this value, 
although the largest lattice we were able to compute was 60 by 60. 
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The graph of free energy against temperature similarly shows maximum rate of increase at around this value.

Experimental Evidence
BKT phase transitions have been realized experimentally using liquid helium 
films[10], superconducting Josephson junctions[11], and 2D atomic hydrogen[12]. 
Taking the last of the three experiments[13] as an example, very cold atomic gas 
(with temperatures to the order of a few μK)  is generated through a Doppler 
cooling technique[14]. Two high-frequency laser beams are sent through the 3D 
gas to create 2D layers of matter waves. The observed interference pattern of the 
waves 
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Figure 9 [3]

  at different temperatures represent the 
amount of vortex-antivortex pairs, that is, the 
interference pattern will be the most distorted when 
the vortex and antivortex are unbound. As shown in 
Figure 9, this occurs at a specific mid-temperature, 
as defined by the theoretical models.

Class ‘XYSystem’
Takes in width of lattice and temperature (0 - 50K)
Width parameter limited by our computational power: impacted ability to observe clear formation and 
unbinding of vortex-antivortex pairs

Construction Function
Generates:
1. Number of spins (based off of width input)
2. Number of interactions (based on number of spins)
3. Energy (based on spin configuration and Hamiltonian)
4. Sideways and up-down interaction constants (based on number of spins and configuration)
5. Spin configurations (random assignment of a variable between zero and 2π on the number of spins)
6. Magnetization (based on average spin configuration)

Apply MCMC Algorithm
Runs through n sweeps to find the final (most thermodynamically favorable) configuration of the lattice at the 
given temperature
Energy of the configuration calculated

Annealing Function
Does the MCMC method for each step in a given range of temperatures
Shows the system undergoing a process of cooling


