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Abstract

Figure 1. Black Hole Structure [1]

This project used Python to simulate the effects

of properties of Schwarzschild and Kerr black

holes, on the paths taken by null geodesics.

Scaling upwards from brute-force algorithms

like Euler’s method of integration to Python’s

scipy library and solve-ivp module, we started

with a general simulation of a Schwarzschild

black hole. Using the Runge-Kutta 4(5) method,

we implemented code that solved four ordinary

differential equations, describing the coordinate

paths of the geodesics, that arose from Ein-

stein’s field equations of relativity [2]. In order

to validate the underlying physics of our simula-

tion, we tested the code on the precission of Mercury’s perihelion, wherein the orbit shifted due

to effects captured by general relativity.

Background

Understanding general relativity and the motion of photons orbiting the accretion disk of black

holes was key for this project. The first to do this was Viergutz, who simulated “the shape of

accretion disks around Kerr black holes” in 1993 [3]. For a more general expression for black

holes in space-time, Kerr metrics have been used for spinning black holes and the same metrics

have been constrained for Schwarzschild black holes [4].

ds2 = −(1 − rsr∑ )c2dt2 +
∑
∆

dr2 +
∑

dθ2 + (r2 + a2 + rsra2∑ sin2 θ) sin2 θdφ2 − 2rsra sin2 θ∑ cdtdφ (1)

The differential equations below are for rate-of-change quantities in the radial, theta, and phi

directions (in our simulation for Schwarzschild black holes, the affine parameter q was set equal

to one such that d2t/dq2 remained constant and equal to one) [4]. For brevity, w = 1 − rs/r,
where rs is the Schwarzschild radius; and v = 1/w. The equations for Kerr black holes include an
additional parameter a, which encodes information about the spin (a = J/m, or the total angular

momentum per unit mass).

ϕ̇ = 2ark sin2 θ + (r2 + a2 cos2 θ − 2r)h
(r2 + a2)(r2 + a2 cos2 θ − 2r) sin2 θ + 2a2rsin4θ

(2)

θ̇ = Q + (ka cos θ − h cot θ)(ka cos θ + h cot θ)
ρ4 (3)

ṙ = ∆
ρ2[kṫ − hϕ̇ − ρ2θ̇2] (4)

Runge-Kutta 4 Method

The Runge-Kutta 4(5) Method is widely regarded as the most accurate numerical method of in-

tegration. It is an algorithm that expands on the classic fourth-order method, and implements an

error estimator of order five. For a first-order ODE, each subsequent value for the underlying

function is determined by the present value in addition to a term characterized by: the product

of a) the step size, and b) a slope estimated by a function on the right-hand side of the differ-

ential equation in question [5]. The higher-order nature of the family of Runge-Kutta methods

compared to Euler’s method to yield less error makes the former an ideal choice.

Schwarzschild and Kerr Simulations

The figure below showcases a stationary black hole with Schwarzschild geodesics programmed

into Python. We set six different variables as our state with respect to time (r, theta, phi, and

their respective derivatives), and then simulated our values using three geodesics equations with

respect to the derivatives of r, theta, and phi. As we initially used spherical coordinates in the

geodesic equations, we converted them to Cartesian coordinates. Additionally, the initial states

were scaled via dividing by an un-normalized speed given by√
ṙ2 + θ̇2 + φ̇2 sin2 θ

We then graphed the equations with sample values for each state using the built-in Solve-IVP

function.

Figure 2. Position graph for a photon under the influence of a Schwarzschild black hole. Time steps of ∆t = 5 seconds were used.

For spinning, Kerr black holes (below Figure), we used the same method, but using r, θ, and φ as

our states. In addition to those states, we also had to define a multitude of other constants such

as Carter’s constant, as well as constants of motion including energy and angular momentum,

which resulted from our choice in quantities for the initial state of the particle. It was also crucial

to use a different set of 3 main geodesics equations to map our particle. After implementing the

required constants and different geodesics equations, we graphed the path of a particle using

Solve-IVP as well.

Figure 3. Position graph for a photon orbiting a Kerr black hole. Time steps of ∆t = 0.5 seconds were used.

Mercury Perihelion

To validate the intuition behind the simulation, the program on Mercury’s perihelion effect pre-

dicted by general relativity has been tested. Due to gravitational forces from other planets, the

major axis of Mercury’s orbit rotates about the Sun, causing a shift in the line that connects the

Sun to the perihelion of the orbit. Einstein, through his theory of general relativity, called the

precise prediction of perihelion shift the most critical test of his theory.

Figure 4. Shifts on Perihelion of Mercury

Future Work

Figure 5. Reissner-Nordstrom Black Hole [6]

In the future, this project could be extended

to Reissner-Nordstrom black holes and Kerr-

Newman black holes, two types of charged

black holes without and with spin, respectively.

Thus, the simulations would include all of the

types of black holes that were found by solv-

ing Einstein’s equations of general relativity. En-

coding models for the Kerr-Newman black hole

would result in a generalization of all possible

black hole types. With specific regards to the

simulation, further actions could be undertaken

with regards to parallelizing the code to make

it more efficient among multiple CPU proces-

sors. Rendering our simulations and comparing

the finished product to images made possible

by the Event Horizon Telescope on the M87 supermassive black hole is also a possible step in

further validation.
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